If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7x2 + -4x + 80 = 0 Reorder the terms: 80 + -4x + 7x2 = 0 Solving 80 + -4x + 7x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. 11.42857143 + -0.5714285714x + x2 = 0 Move the constant term to the right: Add '-11.42857143' to each side of the equation. 11.42857143 + -0.5714285714x + -11.42857143 + x2 = 0 + -11.42857143 Reorder the terms: 11.42857143 + -11.42857143 + -0.5714285714x + x2 = 0 + -11.42857143 Combine like terms: 11.42857143 + -11.42857143 = 0.00000000 0.00000000 + -0.5714285714x + x2 = 0 + -11.42857143 -0.5714285714x + x2 = 0 + -11.42857143 Combine like terms: 0 + -11.42857143 = -11.42857143 -0.5714285714x + x2 = -11.42857143 The x term is -0.5714285714x. Take half its coefficient (-0.2857142857). Square it (0.08163265305) and add it to both sides. Add '0.08163265305' to each side of the equation. -0.5714285714x + 0.08163265305 + x2 = -11.42857143 + 0.08163265305 Reorder the terms: 0.08163265305 + -0.5714285714x + x2 = -11.42857143 + 0.08163265305 Combine like terms: -11.42857143 + 0.08163265305 = -11.34693877695 0.08163265305 + -0.5714285714x + x2 = -11.34693877695 Factor a perfect square on the left side: (x + -0.2857142857)(x + -0.2857142857) = -11.34693877695 Can't calculate square root of the right side. The solution to this equation could not be determined.
| a+.14b=b | | f(x)=x^2+6x-16 | | 5b^2+5b-10= | | 16n-12n= | | 8(2x+5)+13+6(2x+9)=247 | | 7x=10x-63 | | 7x-9+12=-11+2x-6 | | 8a-4w=16 | | 0.8x+1.25=2x | | 2a^2+14a+20= | | 35(5x+3)=30x-(-98) | | -4+2x-10=-5x-7 | | -6k+5(-4k-7)= | | -7x^2+x+9=0 | | x-3+2=2x | | 3l*2=2*3 | | x+10y=4.32 | | 5cos(3x)=0 | | 6xy+5(-6*3z)=2 | | 4*3-2y=-15 | | x?5-7=53 | | 2lgx=6 | | 3x+4+8(2x+5)=272 | | -25x-7-18x=284 | | -2x-7=8x-18+x | | -9(-5.4x+7y)= | | 4*1-2y=-15 | | 3x+4+8(2x+5)= | | 2n-7+3(4n+3)= | | x^2+10x+4=2 | | 5(2x-4)+8=39 | | 2(x+3)/3-2-4x/9=2x-1 |